Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rasmus Damgaard Poulsen and Alan Hazell*

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark

Correspondence e-mail: ach@chem.au.dk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.031$
$w R$ factor $=0.038$
Data-to-parameter ratio $=14.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2,2'-bipyridine- N, N^{\prime})dicyanoiron(III) nitrate

The Fe atom of the title compound, $\left[\mathrm{Fe}(\text { bipy })_{2}(\mathrm{CN})_{2}\right]\left(\mathrm{NO}_{3}\right)$ (bipy is $2,2^{\prime}$-bipyridine, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}$), is octahedrally coordinated to the N atoms of the bipyridines and to the C atoms of the cyanide groups which are cis to each other. The $\mathrm{Fe}-\mathrm{C}$ distances are 1.922 (3) and 1.923 (2) \AA, and the $\mathrm{Fe}-\mathrm{N}$ bonds trans to CN are 1.972 (2) and 1.973 (2) \AA and are longer than those cis to the CN groups, viz. 1.955 (2) and 1.962 (2) \AA. The bipyridine groups are close to being planar, with $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles of $-2.4(3)$ and $1.6(3)^{\circ}$, and bite angles of 81.43 (8) and 81.74 (8) ${ }^{\circ}$.

Comment

During an investigation of reactions between iron diimine complexes and the hexacyanoferrate anion, we prepared the title compound, $\left[\mathrm{Fe}(\text { bipy })_{2}(\mathrm{CN})_{2}\right]\left(\mathrm{NO}_{3}\right)$ (bipy is 2,2'-bipyridine), (I), and determined its crystal structure (Fig. 1).

\square^{+}

- NO_{3}^{-}
(I)

The Fe atom is octahedrally coordinated to the N atoms of the bipyridines and to the C atoms of the cyanide groups, which are cis to each other. The $\mathrm{Fe}-\mathrm{C}$ distances (Table 1) are 1.922 (3) and 1.923 (2) \AA, and the $\mathrm{Fe}-\mathrm{N}$ bonds trans to CN are 1.972 (2) and 1.973 (2) \AA and are longer than those cis to the CN groups, viz. 1.955 (2) and 1.962 (2) \AA. The bipyridine groups are close to being planar, with $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ torsion angles of -2.4 (3) and $1.6(3)^{\circ}$, and bite angles of 81.43 (8) and $81.74(8)^{\circ}$. The bond distances are very similar to those found for the corresponding perchlorate complex (Lu et al., 1988), i.e. $\mathrm{Fe}-\mathrm{C} 1.928$ (7) and 1.931 (7) $\AA, \mathrm{Fe}-\mathrm{N}($ trans to CN$)$ 1.993 (5) and 1.988 (5) \AA, and $\mathrm{Fe}-\mathrm{N}($ cis to CN) 1.955 (4) and 1.972 (4) \AA. The two compounds have the same space group and very similar cell dimensions.

Received 28 March 2001
Accepted 4 April 2001
Online 12 April 2001

Experimental

The title compound was prepared as described by Schilt (1960).

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}(\mathrm{CN})_{2}\right]\left(\mathrm{NO}_{3}\right)$
$M_{r}=482.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.7902$ (6) £
$b=11.7031$ (6) \AA
$c=16.1857$ (9) A
$V=2043.9(1) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Z
$D_{x}=1.567 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD diffractometer
ω rotation scans with narrow frames
Absorption correction: by integration (XPREP; Siemens, 1995)
$T_{\text {min }}=0.718, T_{\text {max }}=0.836$
19837 measured reflections
Cell parameters from 8263 reflections
$\theta=2.1-29.8^{\circ}$
$\mu=0.78 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block, red
$0.40 \times 0.34 \times 0.34 \mathrm{~mm}$

Refinement

Refinement on F
$R=0.031$
$w R=0.038$
$S=1.20$
4302 reflections
300 parameters
H -atom parameters constrained
$w=1 /\left\{\left[\sigma_{\mathrm{cs}}\left(F^{2}\right)+1.03 F^{2}\right]^{1 / 2}-|F|\right\}^{2}$
$(\Delta / \sigma)_{\text {max }}=0.001$

5807 independent reflections 4302 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=29.8^{\circ}$
$h=-14 \rightarrow 15$
$k=-15 \rightarrow 14$
$l=-19 \rightarrow 21$
$\Delta \rho_{\max }=0.80(8)$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.64(8)$ e \AA^{-3}
Extinction correction: $\mathrm{B}-\mathrm{C}$ type 1 , Lorentzian isotropic (Becker \& Coppens, 1974)
Extinction coefficient: 24 (8)
Rogers parameter $=1.02(3) ; 1815$ Friedel pairs (84\%)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Fe}-\mathrm{C} 21$	$1.923(2)$	$\mathrm{Fe}-\mathrm{N} 2$	$1.972(2)$
$\mathrm{Fe}-\mathrm{C} 22$	$1.922(3)$	$\mathrm{Fe}-\mathrm{N} 3$	$1.973(2)$
$\mathrm{Fe}-\mathrm{N} 1$	$1.962(2)$	$\mathrm{Fe}-\mathrm{N} 4$	$1.955(2)$
			$93.15(9)$
$\mathrm{C} 21-\mathrm{Fe}-\mathrm{C} 22$	$85.8(1)$	$\mathrm{N} 3-\mathrm{Fe}-\mathrm{C} 21$	$176.87(8)$
$\mathrm{N} 4-\mathrm{Fe}-\mathrm{C} 22$	$95.89(9)$	$\mathrm{N} 1-\mathrm{Fe}-\mathrm{N} 4$	$96.05(8)$
$\mathrm{N} 1-\mathrm{Fe}-\mathrm{C} 22$	$86.07(9)$	$\mathrm{N} 2-\mathrm{Fe}-\mathrm{N} 4$	$81.74(8)$
$\mathrm{N} 2-\mathrm{Fe}-\mathrm{C} 22$	$91.66(9)$	$\mathrm{N} 3-\mathrm{Fe}-\mathrm{N} 4$	$81.43(8)$
$\mathrm{N} 3-\mathrm{Fe}-\mathrm{C} 22$	$177.47(9)$	$\mathrm{N} 1-\mathrm{Fe}-\mathrm{N} 2$	$96.34(8)$
$\mathrm{N} 4-\mathrm{Fe}-\mathrm{C} 21$	$85.86(9)$	$\mathrm{N} 1-\mathrm{Fe}-\mathrm{N} 3$	$89.49(8)$
$\mathrm{N} 1-\mathrm{Fe}-\mathrm{C} 21$	$96.74(9)$	$\mathrm{N} 2-\mathrm{Fe}-\mathrm{N} 3$	
$\mathrm{~N} 2-\mathrm{Fe}-\mathrm{C} 21$	$176.95(9)$		

H atoms were kept in calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$) with $U_{\text {iso }}=1.2 U_{\text {eq }}$ for the atom to which they are attached.

Figure 1
View of $\left[\mathrm{Fe}(\text { bipy })_{2}(\mathrm{CN})_{2}\right]\left(\mathrm{NO}_{3}\right)$ showing the labelling of the non- H atoms. Displacement ellipsoids are shown at 50% probability level and H atoms are drawn as small circles of arbitrary radius.

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1997) and KRYSTAL (Hazell, 1995); program(s) used to refine structure: modified ORFLS (Busing et al., 1962) and KRYSTAL; molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and KRYSTAL; software used to prepare material for publication: KRYSTAL.

We are indebted to the Carslberg Foundation for the diffractometer and for the cooling device.

References

Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. \& Spagna, R. (1997). SIR97. University of Bari, Italy.
Becker, P. J. \& Coppens, P. (1974). Acta Cryst. A30, 129-153.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-
TM-305. Oak Ridge National Laboratory, Tennessee, USA.
Hazell, A. (1995). KRYSTAL. Aarhus University, Denmark.
Lu, T.-H., Kao, H.-Y., Wu, D. I., Kong, K. C. \& Cheng, C. H. (1988). Acta Cryst. C44, 1184-1186.
Schilt, A. A. (1960). J. Am. Chem. Soc. 82, 3000-3005.
Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Winsconsin, USA.

